Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Direct propylene epoxidation with oxygen using a photo-electro-heterogeneous catalytic system

Abstract

Propylene oxide is a crucial feedstock in the plastic industry. The direct epoxidation of propylene using O2 is considered among the most promising means of producing propylene oxide. Here we report an integrated photo-electro-heterogeneous catalytic system for propylene epoxidation with O2. Bismuth vanadate (or TiO2) photocatalyst and a Co-based electrocatalyst produces H2O2. A titanium silicalite-1 heterogeneous catalyst subsequently epoxidizes propylene to propylene oxide with the in situ-generated H2O2. The proposed system enables propylene oxide production with O2 as the sole oxidizing agent under light irradiation without using H2, a sacrificial agent, or external bias. It stably produces propylene oxide for 24 h with high selectivity (≥98%) under ambient conditions. These results demonstrate the potential of this catalytic system to produce chemical compounds in an environmentally benign manner.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of PO production in photo-electro-heterogeneous catalytic system.
Fig. 2: Catalyst characterization.
Fig. 3: H2O2 production and propylene epoxidation in the integrated catalytic system.
Fig. 4: H2O2 and PO production in the integrated catalytic system under visible light.

Similar content being viewed by others

Data availability

The experimental data in the main text and the Supplementary Information are available at https://doi.org/10.6084/m9.figshare.16936906.

References

  1. Zuwei, X., Ning, Z., Yu, S. & Kunlan, L. Reaction-controlled phase-transfer catalysis for propylene epoxidation to propylene oxide. Science 292, 1139–1141 (2001).

    Article  CAS  Google Scholar 

  2. Leow, W. R. et al. Chloride-mediated selective electrosynthesis of ethylene and propylene oxides at high current density. Science 368, 1228–1233 (2020).

    Article  CAS  Google Scholar 

  3. Zhan, C. et al. Critical roles of doping Cl on Cu2O nanocrystals for direct epoxidation of propylene by molecular oxygen. J. Am. Chem. Soc. 142, 14134–14141 (2020).

    Article  CAS  Google Scholar 

  4. Teržan, J., Huš, M., Likozar, B. & Djinović, P. Propylene epoxidation using molecular oxygen over copper- and silver-based catalysts: a review. ACS Catal. 10, 13415–13436 (2020).

    Article  Google Scholar 

  5. Cavani, F. & Teles, J. H. Sustainability in catalytic oxidation: an alternative approach or a structural evolution? ChemSusChem 2, 508–534 (2009).

    Article  CAS  Google Scholar 

  6. Lei, Y. et al. Increased silver activity for direct propylene epoxidation via subnanometer size effects. Science 328, 224–228 (2010).

    Article  CAS  Google Scholar 

  7. Ghosh, S. et al. Selective oxidation of propylene to propylene oxide over silver-supported tungsten oxide nanostructure with molecular oxygen. ACS Catal. 4, 2169–2174 (2014).

    Article  CAS  Google Scholar 

  8. Huang, J. et al. Propene epoxidation with dioxygen catalyzed by gold clusters. Angew. Chem. Int. Ed. 48, 7862–7866 (2009).

    Article  CAS  Google Scholar 

  9. Torres, D., Lopez, N., Illas, F. & Lambert, R. M. Low-basicity oxygen atoms: a key in the search for propylene epoxidation catalysts. Angew. Chem. Int. Ed. 46, 2055–2058 (2007).

    Article  CAS  Google Scholar 

  10. Barton, J. L. Electrification of the chemical industry. Science 368, 1181–1182 (2020).

    Article  CAS  Google Scholar 

  11. Gordon, C. P. et al. Efficient epoxidation over dinuclear sites in titanium silicalite-1. Nature 586, 708–713 (2020).

    Article  CAS  Google Scholar 

  12. Campos-Martin, J. M., Blanco-Brieva, G. & Fierro, J. L. G. Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process. Angew. Chem. Int. Ed. 45, 6962–6984 (2006).

    Article  CAS  Google Scholar 

  13. Hayashi, T., Tanaka, K. & Haruta, M. Selective vapor-phase epoxidation of propylene over Au/TiO2 catalysts in the presence of oxygen and hydrogen. J. Catal. 178, 566–575 (1998).

    Article  CAS  Google Scholar 

  14. Uphade, B. S., Akita, T., Nakamura, T. & Haruta, M. Vapor-phase epoxidation of propene using H2 and O2 over Au/Ti–MCM-48. J. Catal. 209, 331–340 (2002).

    Article  CAS  Google Scholar 

  15. Sinha, A. K., Seelan, S., Tsubota, S. & Haruta, M. A three-dimensional mesoporous titanosilicate support for gold nanoparticles: vapor-phase epoxidation of propene with high conversion. Angew. Chem. Int. Ed. 43, 1546–1548 (2004).

    Article  CAS  Google Scholar 

  16. Liu, B. & Aydil, E. S. Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J. Am. Chem. Soc. 131, 3985–3990 (2009).

    Article  CAS  Google Scholar 

  17. Liu, C., Tang, J., Chen, H. M., Liu, B. & Yang, P. A fully integrated nanosystem of semiconductor nanowires for direct solar water splitting. Nano Lett. 13, 2989–2992 (2013).

    Article  CAS  Google Scholar 

  18. Wang, G. et al. Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett. 11, 3026–3033 (2011).

    Article  CAS  Google Scholar 

  19. Kim, T. W. & Choi, K.-S. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343, 990–994 (2014).

    Article  CAS  Google Scholar 

  20. Park, Y., McDonald, K. J. & Choi, K.-S. Progress in bismuth vanadate photoanodes for use in solar water oxidation. Chem. Soc. Rev. 42, 2321–2337 (2013).

    Article  CAS  Google Scholar 

  21. Zhong, D. K., Choi, S. & Gamelin, D. R. Near-complete suppression of surface recombination in solar photoelectrolysis by “Co-Pi” catalyst-modified W:BiVO4. J. Am. Chem. Soc. 133, 18370–18377 (2011).

    Article  CAS  Google Scholar 

  22. Ko, M. et al. Unassisted solar lignin valorisation using a compartmented photo-electro-biochemical cell. Nat. Commun. 10, 5123 (2019).

    Article  Google Scholar 

  23. Blasco, T., Camblor, M. A., Corma, A. & Perez-Pariente, J. The state of Ti in titanoaluminosilicates isomorphous with zeolite β. J. Am. Chem. Soc. 115, 11806–11813 (1993).

    Article  CAS  Google Scholar 

  24. Fan, W. et al. Synthesis, crystallization mechanism, and catalytic properties of titanium-rich TS-1 free of extraframework titanium species. J. Am. Chem. Soc. 130, 10150–10164 (2008).

    Article  CAS  Google Scholar 

  25. Li, C. et al. UV resonance Raman spectroscopic identification of titanium atoms in the framework of TS-1 zeolite. Angew. Chem. Int. Ed. 38, 2220–2222 (1999).

    Article  CAS  Google Scholar 

  26. Möller, S. et al. Online monitoring of electrochemical carbon corrosion in alkaline electrolytes by differential electrochemical mass spectrometry. Angew. Chem. Int. Ed. 59, 1585–1589 (2020).

    Article  Google Scholar 

  27. Bader, H., Sturzenegger, V. & Hoigné, J. Photometric method for the determination of low concentrations of hydrogen peroxide by the peroxidase catalyzed oxidation of N,N-diethyl-p-phenylenediamine (DPD). Water Res. 22, 1109–1115 (1988).

    Article  CAS  Google Scholar 

  28. Li, B. et al. Hydration of epoxides on [CoIII(salen)] encapsulated in silica-based nanoreactors. Angew. Chem. Int. Ed. 51, 11517–11521 (2012).

    Article  CAS  Google Scholar 

  29. Khouw, C. B. & Davis, M. E. Catalytic activity of titanium silicates synthesized in the presence of alkali-metal and alkaline-earth ions. J. Catal. 151, 77–86 (1995).

    Article  CAS  Google Scholar 

  30. Linsebigler, A. L., Lu, G. & Yates, J. T. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 95, 735–758 (1995).

    Article  CAS  Google Scholar 

  31. Zhang, D. et al. Plasmonic electrically functionalized TiO2 for high-performance organic solar cells. Adv. Funct. Mater. 23, 4255–4261 (2013).

    Article  CAS  Google Scholar 

  32. Lee, Y. W. et al. Unbiased biocatalytic solar-to-chemical conversion by FeOOH/BiVO4/perovskite tandem structure. Nat. Commun. 9, 4208 (2018).

    Article  Google Scholar 

  33. Lee, D. K. & Choi, K.-S. Enhancing long-term photostability of BiVO4 photoanodes for solar water splitting by tuning electrolyte composition. Nat. Energy 3, 53–60 (2018).

    Article  CAS  Google Scholar 

  34. Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    Article  CAS  Google Scholar 

  35. Liu, X., Richtering, W. & Akolkar, R. Investigation of the kinetics and mass transport aspects of hydrogen evolution during electroless deposition of nickel–phosphorus. J. Electrochem. Soc. 164, D498–D504 (2017).

    Article  CAS  Google Scholar 

  36. Chenlo, F., Moreira, R., Pereira, G. & Vázquez, M. J. Viscosity of binary and ternary aqueous systems of NaH2PO4, Na2HPO4, Na3PO4, KH2PO4, K2HPO4, and K3PO4. J. Chem. Eng. Data 41, 906–909 (1996).

    Article  CAS  Google Scholar 

  37. Yin, G. & Zhang, J. Rotating Electrode Methods and Oxygen Reduction Electrocatalysts 1st edn (Elsevier, 2014).

  38. Khomane, R. B., Kulkarni, B. D., Paraskar, A. & Sainkar, S. R. Synthesis, characterization and catalytic performance of titanium silicalite-1 prepared in micellar media. Mater. Chem. Phys. 76, 99–103 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF-2016R1A5A1009405 and NRF-2017R1A2B4007310 to J.H.K.; NRF-2017M1A2A2087630 to J.-W.J.; NRF-2019M3D1A1079306 and NRF-2021R1A2C2007495 to S.H.J.; and NRF-2020R1A6A3A13075849 to M.K.). J.-W.J. also acknowledges the POSCO Science Fellowship of the POSCO TJ Park Foundation.

Author information

Authors and Affiliations

Authors

Contributions

J.H.K., J.-W.J. and S.H.J. proposed and directed the project. M.K., Y.K. and J.W. conceived and designed the experiments. B.L. and H.L. performed the techno-economic analysis of the designed system. M.K. and R.M. prepared the TiO2 and BiVO4 photocatalysts and measured their performances with S.W.H. and P.S.; Y.K. synthesized and characterized the TS-1 catalyst. J.W. prepared the Co–N/CNT electrocatalysts and measured their selectivity for H2O2 production. M.K. and Y.K. measured the performance of PO conversion. J.K. and H.Y.J. contributed to TEM analysis. M.K., Y.K., J.W., S.H.J., J.-W.J. and J.H.K. co-wrote the manuscript. All authors read and commented on the manuscript.

Corresponding authors

Correspondence to Sang Hoon Joo, Ji-Wook Jang or Ja Hun Kwak.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review information

Nature Catalysis thanks Petar Djinović and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–33, Tables 1–6 and Note 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ko, M., Kim, Y., Woo, J. et al. Direct propylene epoxidation with oxygen using a photo-electro-heterogeneous catalytic system. Nat Catal 5, 37–44 (2022). https://doi.org/10.1038/s41929-021-00724-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-021-00724-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing